首页> 外文OA文献 >Group-wise Deep Co-saliency Detection
【2h】

Group-wise Deep Co-saliency Detection

机译:分组深度共同检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose an end-to-end group-wise deep co-saliency detectionapproach to address the co-salient object discovery problem based on the fullyconvolutional network (FCN) with group input and group output. The proposedapproach captures the group-wise interaction information for group images bylearning a semantics-aware image representation based on a convolutional neuralnetwork, which adaptively learns the group-wise features for co-saliencydetection. Furthermore, the proposed approach discovers the collaborative andinteractive relationships between group-wise feature representation andsingle-image individual feature representation, and model this in acollaborative learning framework. Finally, we set up a unified end-to-end deeplearning scheme to jointly optimize the process of group-wise featurerepresentation learning and the collaborative learning, leading to morereliable and robust co-saliency detection results. Experimental resultsdemonstrate the effectiveness of our approach in comparison with thestate-of-the-art approaches.
机译:在本文中,我们提出了一种端到端的逐组深度共显性检测方法,以解决基于具有组输入和组输出的全卷积网络(FCN)的共显着对象发现问题。所提出的方法通过学习基于卷积神经网络的语义感知图像表示来捕获群体图像的群体交互信息,该神经网络自适应地学习群体特征以进行共显着性检测。此外,提出的方法发现了基于群体的特征表示和单图像个体特征表示之间的协作和交互关系,并在协作学习框架中对此进行了建模。最后,我们建立了统一的端到端深度学习方案,以共同优化基于组的特征表示学习和协作学习的过程,从而获得更可靠,更可靠的共显着性检测结果。实验结果证明了我们的方法与最新方法相比的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号